Спутниковый телефон: возможности и характеристики. Спутниковая связь. История развития спутниковой связи Применение спутниковой связи

Для организации спутниковой связи в Российской Федерации создана орбитальная группировка из геостационарных спутников, работающих в C– Ku– и L – диапазонах. Космические аппараты расположены в орбитальных позициях на дуге от 14 градусов западной долготы до 145 градусов восточной долготы. Их зоны обслуживания охватывают территории России, СНГ, Европы, Азии, Северной и Южной Америки, Африки. Эта национальная спутниковая группировка связи и вещания принадлежит государству: ФГУП «Космическая связь» (ГПКС). Внешний вид группировки представлен на рис. 7.1.

По состоянию на начало 2008 года спутниковая группировка включает в свой состав как новые спутники, так и спутники, официальный срок службы которых давно закончился (табл. 7.1) .

Спутники: Экспресс–А4, Горизонт № 44, Экспресс–А 3, Экран Спутники: Экспресс –А4, Горизонт № 44, Экспресс –А3, Экран-М №18, Экспресс-А2, Горизонт №40 и Горизонт № 45 работают за пределами их официального срока активного существования. Спутники: Экспресс АМ-44, Ямал-300 №2, Экспресс-АТ, Ямал-300 №1, Экспресс-АМ33, Экспресс-МД планируются к запуску в ближайшие годы. Спутник Eutelsat W4 относится к группировке Eutelsat, с него арендуются несколько стволов в интересах российской группировки.

Таблица 7.1

Орбитальная позиция

Наименование космического

аппарата

Год запуска

Год окончания эксплуатации

Экспресс –А4

Экспресс-АМ44

Горизонт № 44

Экспресс –А3

Экспресс –АМ1

Ямал-200 №2

Экспресс-АМ22

Ямал-300 №2

Экспресс-АТ

Экспресс-АМ2

Ямал-200 №1

Ямал-300 №1

Экспресс-АМ33

Экран-М №18

Экспресс-А2

Экспресс-МД

Горизонт №40

Экспресс-АМ3

Горизонт № 45

Первые спутники, необходимые для построения в России сети цифрового телевидения в рамках федеральной целевой программы - спутники «Экспресс АМ-44» и «Экспресс-МД1» выведены на орбиту. Следом за этими спутниками должен последовать запуск еще несколько тяжелых спутников, в том числе «Экспресс-АМ5» и «Экспресс-АМ6»,.

Кроме российских спутников территорию России захватывают рабочие зоны многих зарубежных спутников связи как в С–, так и в Ku–диапазонах, но для практического применения в Ku–диапазоне наиболее приемлемыми являются: Intelsat-904 (60E); Intelsat-704 (66E); IS8 (ранее Panamsat-8, 166E) –Дальний Восток (без Чукотки); IS2 (Panamsat-8, 166E) – Дальний Восток (без Чукотки); IS-12 (Panamsat-12, 45E) и IS-10 (ранее Panamsat-10, 68, 5Е) для использования в регионах России за исключением Дальнего Востока.

В рамках новой Федеральной космической программы России до 2015 года ГПКС осуществляет строительство и запуск новых космических аппаратов :

Таблица 7.2

Орбитальная позиция

Наименование

космического

аппарата

Год запуска

Назначение

Экспресс-АМ33

Оказание услуг фиксированной связи, телерадиовещания, услуг мультимедиа в C- и Ku-диапазонах, а также для подвижной правительственной и коммерческой связи.

Экспресс-АМ44

Экспресс-АМ4

Спутники непосредственного вещания

Экспресс-АМ4

Экспресс-АТ

Экспресс-АТ

Новая система на базе трех спутников серии Экспресс-РВ со сроком службы 15 лет поможет кроме телекоммуникацонного обслуживания обеспечить передачу сервисной информации (карта, погода, дифференциальные поправки, ГЛОНАСС и GPS).

Новый состав группировки позволит обеспечить взаимное резервирование космических аппаратов на всей орбитальной дуге и гарантировать развитие и функционирование систем спутниковой связи и телерадиовещания в интересах государственных пользователей на всей территории нашей страны.

Для организации систем связи и вещания, а также для контроля и управления космическим флотом используются шесть телепортов ГПКС в России (среди которых крупнейший телепорт Восточной Европы – ЦКС «Дубна», волоконно-оптическая сеть с общей пропускной способностью до 5 Гбит /с, а также технический центр коммутации каналов связи и компрессии сигналов в Москве). Структура наземного комплекса технических средств ГПКС представлена на рис. 7.2.

Развитие сети спутниковой связи характеризуется частотным ресурсом российской спутниковой группировки, к которой относятся наиболее значимые для российского рынка спутники, имеющие международную регистрацию под названием «Спутниковые сети «Экспресс». В таблице 7.3 представлена емкость российских спутников связи и спутников непосредственного вещания, работающих на территории России, по состоянию на 2006 год. Частотный ресурс спутников связи «Горизонт» (и их аналога – первой серии космических аппаратов (КА) «Экспресс») в расчет не принят, так как данные спутники работают за пределами гарантированного срока службы.

К 2007 году ГПКС полностью перевело все транслируемые телерадиопрограммы с аналоговых на цифровые технологии. Пакет общероссийских программ телерадиовещания распространяется через спутники ГПКС на пять вещательных зон, с учетом временного сдвига, и доступен на всей территории России, а международные версии программ – и в странах Азиатско-Тихоокеанского и Атлантического регионов.

Таблица 7.3

Оператор

Емкость спутников, МГц

Примечание

C-диапазон

Ku-диапазон

Спутники связи российской спутниковой группировки

Ресурс спутника «Горизонт» не учитывается

ОАО «Газком»

Спутники непосредственного вещания

Обслуживает Центральную и Западную Сибирь

Обслуживает европейскую часть

В соответствии с концепцией развития цифрового телерадиовещания до 2015 г. в России ГПКС вводит в эксплуатацию новый центр компрессии сигналов телерадиопрограмм по стандарту MPEG-4 part 10 и передающую станцию, которая обеспечит трансляцию потока в стандарте DVB-S2 . В настоящее время формирование и подъем на спутники пакетов общероссийских телерадиопрограмм осуществляется в стандарте MPEG-2/DVB-S, при этом в транспондере размещены до 8 программ стандартного качества. Планируемый стандарт MPEG-4 в сочетании с DVB-S2 позволит передавать порядка 20 программ стандартного качества или 10 программ телевидения высокого качества в одном транспондере. Широкое внедрение стандарта MPEG-4 позволит создать условия для охвата населения России многопрограммным вещанием, обеспечить переход к телевизионным программам нового качества - телевидению высокой четкости (ТВЧ). Это поможет и дальнейшему развитию непосредственного телевизионного вещания со спутника – вещание на мобильные терминалы конечных пользователей, в том числе и в интерактивном режиме.

Спутники, к созданию которых ГПКС уже приступило, будут обладать транспондерами с повышенной энергетикой для развития телевидения, решения многоаспектных задач построения сетей телерадиовещания, включая эволюцию мобильного телевидения. В конфигурацию новых космических аппаратов заложены по три перенацеливаемых антенны: одна - C–диапазона, две другие – Ku-диапазона. Энергетические характеристики новых спутников будут улучшены как минимум на 3–5 дБ по сравнению с эксплуатируемыми космическими аппаратами «Экспресс-АМ», что позволит применять наземные антенны около метра в диаметре. Все это поможет ГКПС оперативно реагировать на меняющиеся потребности рынка, а также выйти на неосвоенные пока регионы.

Среди операторов наземных сетей спутниковой связи выделяют три основные категории: операторы интерактивных VSAT–сетей; операторы сетей типа «точка – точка»; операторы крупных корпоративных сетей.

Развитие операторов интерактивных VSAT – сетей началось в 2003 г. и было стимулировано применением новых VSAT-технологий типа DVB-RCS и им подобных.

Формирование операторов сетей типа «точка-точка» началось в 1990-х годах. Довольно часто такие компании создавались крупными операторами, контролирующими наземные сети общего пользования. Операторы крупных корпоративных сетей, как правило, являются подразделениями своих головных компаний и не имеют цели предоставления услуг связи на коммерческой основе.

Из представленных выше операторов наибольший интерес представляют операторы быстро развивающихся интерактивных VSAT-сетей, в собственности которых находятся центральные станции этих сетей (HUB). За период 2003–2008 гг. в России построено не менее 20 центральных станций. В таблице 7.4 представлены компании, которые развивают свои сети на коммерческой основе.

В настоящее время наиболее активно развивается предоставление услуг с использованием интерактивных технологий VSAT для конечных пользователей, а не для провайдеров. Основной целью создания интерактивных сетей VSAT было предоставление высокоскоростного доступа в Интернет по узкополосным каналам, что и обеспечивает коммерческий успех этого сервиса.

В России для работы VSAT – станций выделены две полосы частот в Ku – диапазоне для фиксированного применения на долговременной основе.

В настоящее время наиболее динамично развивающимся сектором спутниковой связи является сектор мультисервисных услуг на базе технологий VSAT. Мультисервисные услуги базируются на перспективной технологии IPTV. Основным фактором ее развития являются наличие большого числа центральных станций интерактивных сетей VSAT, которые подходят для распространения сигналов IPTV, и возможность предоставления данной услуги по низкоскоростным каналам связи, которых в России подавляющее большинство. Предполагается, что к 2010 году в России сформируется активный рынок услуг IPTV.

Таблица 7.4

Компания

Технология

Начало коммерческой эксплуатации, год

Примечание

SkyStar360E, SkyEdge

SkyEdge применяется с IV кв. 2005 г. ЦУС в Москве

В коммерческом режиме с 2004г. в ЦУС в Москве.

Торговая марка Spin. ЦУС в Москве

Современный гуманитарный университет

Функции дистанционного образования. ЦУС в Москве

Томский государственный университет

Функции дистанционного образования. ЦУС в Томске

ВебМедиа Сервисез

EMS применяется с 2006 г. ЦУС в Москве

Сеть –Телеком

DirecWay 6000/7000

Торговая марка Altegro Sky. ЦУС в Москве

Сахателеком

ЦУС в Якутске

Морсвязьспутник

ЦУС в Московской области

Дозор-телепорт

ЦУС в Москве

Сибинтек

ЦУС в Москве

Амтел-Связь

ЦУС в Барнауле

Глобалтел

SkyEdge, DirecWay 6000

ЦУС в Хабаровске, Новосибирске, Москве

ЦУС в Москве

Традиционные интерактивные сети спутниковой связи VSAT с прямой ретрансляцией сигналов большинства современных операторов имеют, как правило, топологию «звезда». Мультиплексирование сигналов и формирование информационных потоков происходит на центральной земной станции (ЦЗС, или HUB). Доставка информационных потоков провайдеров услуг на центральную станцию требует наличия наземных каналов передачи информации. Данное обстоятельство приводит к значительному увеличению затрат на организацию наземных линий связи при значительном удалении провайдера услуг. Даже если имеется возможность организации сети с топологией «каждый с каждым» (mesh) с использованием «прозрачного ретранслятора в один «скачок», это требует существенных энергетических затрат на спутнике или значительного увеличения размеров антенн и мощности передатчиков абонентских станций. Следовательно, повышается себестоимость таких каналов по сравнению с каналами в строго централизованной сети с топологией «звезда».

Связь в два «скачка» используется очень редко, как из-за удвоения задержки, так и из-за двойного использования ресурса и удорожания канала.

Возникающая за счет двойного «скачка» задержка сигнала вызывает проблемы в организации телефонной и видеоконференцсвязи. В рамках большинства интерактивных VSAT–сетей на базе «прозрачных» ретрансляторов с центральной станцией проблема создания mesh – сетей вообще неразрешима, поскольку такую структуру традиционная центральная станция не поддерживает.

Если же центральную станцию со всеми ее функциями модуляции/демодуляции, кодирования/декодирования, мультиплексирования и коммутации разместить на борту спутника, то можно получить новое качество предоставляемых услуг. Такая центральная станция в космосе обеспечит мультимедийные услуги теле- и радиовещания, передачи данных, телефонии, доступа в Интернет, видеоконференцсвязи в едином цифровом потоке на линии «вниз» в пределах всей зоны обслуживания спутника. При этом возникают существенные преимущества по сравнению с традиционными сетями:

Организация связи непосредственно между пользователями в один «скачок» по принципу «каждый с каждым» или «каждый со всеми»;

Полная регенерация (подавление помех) сигнала на борту спутника;

Исключение несанкционированного доступа к ретранслятору спутника (ресурс выделяется только после процедуры идентификации пользователей сети);

Исключение необходимости строительства наземных линий связи с центральной станцией мультиплексирования (провайдеры услуг могут непосредственно работать через ретранслятор спутника), что наиболее актуально для региональных операторов, которые не имеют собственных центральных земных станций.

Приборы обработки сигналов на борту спутника связи получили название бортовых цифровых платформ (БЦП).

Таким образом, развитие сети спутниковой связи базируется не только на расширении спутниковой группировки, но и совершенствования методов обработки сигнала не только на центральных наземных станциях, но и непосредственно на космических аппаратах. При комплексном решении указанных проблем спутниковая как фиксированная, так и мобильная спутниковая мультисервисная связь может занять существенную долю рынка инфотелекоммуникационных услуг.

Инженеры работают над первым в мире коммерческим спутником связи Early Bird

По сегодняшним меркам спутник Early Bird (INTELSAT I ) обладал более чем скромными возможностями: обладая полосой пропускания 50 МГц, он мог обеспечивать до 240 телефонных каналов связи . В каждый конкретный момент времени связь могла осуществляться между земной станцией в США и только одной из трёх земных станций в Европе (в Великобритании , Франции или Германии), которые были соединены между собой кабельными линиями связи .

В дальнейшем технология шагнула вперед, и спутник INTELSAT IX уже обладал полосой пропускания 3456 МГц .

В СССР долгое время спутниковая связь развивались только в интересах Министерства Обороны СССР. В силу большей закрытости космической программы развитие спутниковой связи в социалистических странах шло иначе чем в западных странах. Развитие гражданской спутниковой связи началось соглашением между 9 странами социалистического блока о создании системы связи «Интерспутник » которое было подписано только в 1971 году

Спутниковые ретрансляторы

Пассивный спутник связи Echo-2. Металлизированная надувная сфера выполняла функции пассивного ретранслятора

В первые годы исследований использовались пассивные спутниковые ретрансляторы (примеры - спутники «Эхо» и «Эхо-2»), которые представляли собой простой отражатель радиосигнала (часто - металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными. Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. Спутниковые ретрансляторы могут быть нерегенеративными и регенеративными . Нерегенеративный спутник, приняв сигнал от одной земной станции, переносит его на другую частоту, усиливает и передает другой земной станции. Спутник может использовать несколько независимых каналов, осуществляющих эти операции, каждый из которых работает с определенной частью спектра (эти каналы обработки называются транспондерами ).

Регенеративный спутник производит демодуляцию принятого сигнала и заново модулирует его. Благодаря этому исправление ошибок производится дважды: на спутнике и на принимающей земной станции. Недостаток этого метода - сложность (а значит, гораздо более высокая цена спутника), а также увеличенная задержка передачи сигнала.

Орбиты спутниковых ретрансляторов

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса :

  • экваториальные,
  • наклонные,
  • полярные.

Важной разновидностью экваториальной орбиты является геостационарная орбита , на которой спутник вращается с угловой скоростью , равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно.

Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является больша́я высота, а значит, и бо́льшая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите не способен обслуживать земные станции в приполярной области.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная орбита - предельный случай наклонной (с наклонением 90º).

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник . Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки.

Многократное использование частот. Зоны покрытия

Поскольку радиочастоты являются ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами :

  • пространственное разделение - каждая антенна спутника принимает сигнал только с определенного района, при этом разные районы могут использовать одни и те же частоты,
  • поляризационное разделение - различные антенны принимают и передают сигнал во взаимно перпендикулярных плоскостях поляризации , при этом одни и те же частоты могут применяться два раза (для каждой из плоскостей).

Типичная карта покрытия для спутника, находящегося на геостационарной орбите, включает следующие компоненты :

  • глобальный луч - производит связь с земными станциями по всей зоне покрытия, ему выделены частоты, не пересекающиеся с другими лучами этого спутника.
  • лучи западной и восточной полусфер - эти лучи поляризованы в плоскости A, причем в западной и восточной полусферах используется один и тот же диапазон частот.
  • зонные лучи - поляризованы в плоскости B (перпендикулярной A) и используют те же частоты, что и лучи полусфер. Таким образом, земная станция, расположенная в одной из зон, может использовать также лучи полусфер и глобальный луч.

При этом все частоты (за исключением зарезервированных за глобальным лучом) используются многократно: в западной и восточной полусферах и в каждой из зон.

Частотные диапазоны

Антенна для приема спутникового телевидения (Ku-диапазон)

Спутниковая антенна для C-диапазона

Выбор частоты для передачи данных от земной станции к спутнику и от спутника к земной станции не является произвольным. От частоты зависит, например, поглощение радиоволн в атмосфере , а также необходимые размеры передающей и приемной антенн. Частоты, на которых происходит передача от земной станции к спутнику, отличаются от частот, используемых для передачи от спутника к земной станции (как правило, первые выше).

Частоты, используемые в спутниковой связи, разделяют на диапазоны, обозначаемые буквами. К сожалению, в различной литературе точные границы диапазонов могут не совпадать. Ориентировочные значения даны в рекомендации ITU -R V.431-6 :

Название диапазона Частоты (согласно ITU-R V.431-6) Применение
L 1,5 ГГц Подвижная спутниковая связь
S 2,5 ГГц Подвижная спутниковая связь
С 4 ГГц, 6 ГГц Фиксированная спутниковая связь
X Для спутниковой связи рекомендациями ITU-R частоты не определены. Для приложений радиолокации указан диапазон 8-12 ГГц. Фиксированная спутниковая связь (для военных целей)
Ku 11 ГГц, 12 ГГц, 14 ГГц
K 20 ГГц Фиксированная спутниковая связь, спутниковое вещание
Ka 30 ГГц Фиксированная спутниковая связь, межспутниковая связь

Используются и более высокие частоты, но повышение их затруднено высоким поглощением радиоволн этих частот атмосферой. Ku-диапазон позволяет производить прием сравнительно небольшими антеннами, и поэтому используется в спутниковом телевидении (DVB), несмотря на то, что в этом диапазоне погодные условия оказывают существенное влияние на качество передачи.

Для передачи данных крупными пользователями (организациями) часто применяется C-диапазон. Это обеспечивает более высокое качество приема, но требует довольно больших размеров антенны.

Модуляция и помехоустойчивое кодирование

Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум , вызванного несколькими факторами:

  • значительной удаленностью приемника от передатчика,
  • ограниченной мощностью спутника (невозможностью вести передачу на большой мощности).

В связи с этим спутниковая связь плохо подходит для передачи аналоговых сигналов . Поэтому для передачи речи её предварительно оцифровывают , используя, например, импульсно-кодовую модуляцию (ИКМ) .

Для передачи цифровых данных по спутниковому каналу связи они должны быть сначала преобразованы в радиосигнал, занимающий определенный частотный диапазон. Для этого применяется модуляция (цифровая модуляция называется также манипуляцией ). Наиболее распространенными видами цифровой модуляции для приложений спутниковой связи являются фазовая манипуляция и квадратурная амплитудная модуляция . Например, в системах стандарта DVB-S2 применяются QPSK, 8-PSK, 16-APSK и 32-APSK .

Модуляция производится на земной станции. Модулированный сигнал усиливается, переносится на нужную частоту и поступает на передающую антенну . Спутник принимает сигнал, усиливает, иногда регенерирует, переносит на другую частоту и с помощью определённой передающей антенны транслирует на землю.

Множественный доступ

Для обеспечения возможности одновременного использования спутникового ретранслятора несколькими пользователями применяют системы множественного доступа :

  • Множественный доступ с частотным разделением - при этом каждому пользователю предоставляется отдельный диапазон частот.
  • множественный доступ с временны́м разделением - каждому пользователю предоставляется определенный временной интервал (таймслот), в течение которого он производит передачу и прием данных.
  • множественный доступ с кодовым разделением - при этом каждому пользователю выдается кодовая последовательность, ортогональная кодовым последовательностям других пользователей. Данные пользователя накладываются на кодовую последовательность таким образом, что передаваемые сигналы различных пользователей не мешают друг другу, хотя и передаются на одних и тех же частотах.

Кроме того, многим пользователям не требуется постоянный доступ к спутниковой связи. Этим пользователям канал связи (таймслот) выделяется по требованию с помощью технологии DAMA (Demand Assigned Multiple Access - множественный доступ с предоставлением каналов по требованию).

Применение спутниковой связи

Магистральная спутниковая связь

Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. Первой системой спутниковой связи стала система Intelsat , затем были созданы аналогичные региональные организации (Eutelsat , Arabsat и другие). С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных.

С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи .

Системы VSAT

Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне - 0,75-1,8 м.

В системах VSAT применяется технология предоставления каналов по требованию.

Системы подвижной спутниковой связи

Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того, чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений:

  • Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Подобный метод используется операторами Iridium и Globalstar.

С операторами персональной спутниковой связи конкурируют операторы сотовой связи . Характерно, что как Globalstar, так и Iridium испытывали серьёзные финансовые затруднения, которые довели Iridium до реорганизационного банкротства в 1999 г.

В декабре 2006 года был запущен экспериментальный геостационарный спутник Кику-8 с рекордно большой площадью антенны, который предполагается использовать для отработки технологии работы спутниковой связи с мобильными устройствами, не превышающими по размерам сотовые телефоны.

Спутниковый Интернет

Спутниковая связь находит применение в организации «последней мили » (канала связи между интернет-провайдером и клиентом), особенно в местах со слабо развитой инфраструктурой.

Особенностями такого вида доступа являются:

  • Разделение входящего и исходящего трафика и привлечение дополнительных технологий для их совмещения. Поэтому такие соединения называют асимметричными .
  • Одновременное использование входящего спутникового канала несколькими (например 200-ми) пользователями: через спутник одновременно передаются данные для всех клиентов «вперемешку», фильтрацией ненужных данных занимается клиентский терминал (по этой причине возможна «Рыбалка со спутника »).

По типу исходящего канала различают:

  • Терминалы, работающие только на прием сигнала (наиболее дешевый вариант подключения). В этом случае для исходящего трафика необходимо иметь другое подключение к Интернету, поставщика которого называют наземным провайдером . Для работы в такой схеме привлекается туннелирующее программное обеспечение, обычно входящее в поставку терминала. Несмотря на сложность (в том числе сложность в настройке), такая технология привлекательна большой скоростью по сравнению с dial-up за сравнительно небольшую цену.
  • Приемо-передающие терминалы. Исходящий канал организуется узким (по сравнению со входящим). Оба направления обеспечивает одно и то же устройство, и поэтому такая система значительно проще в настройке (особенно если терминал внешний и подключается к компьютеру через интерфейс Ethernet). Такая схема требует установки на антенну более сложного (приемо-передающего) конвертера.

И в том, и в другом случае данные от провайдера к клиенту передаются, как правило, в соответствии со стандартом цифрового вещания DVB, что позволяет использовать одно и то же оборудование как для доступа в сеть, так и для приема спутникового телевидения.

Недостатки спутниковой связи

Слабая помехозащищённость

Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того, чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны , малошумящие элементы и сложные помехоустойчивые коды . Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

Влияние атмосферы

На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере .

Поглощение в тропосфере

Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода) . В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания , причиной которому является разница в коэффициентах преломления различных слоев атмосферы.

Ионосферные эффекты

Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят мерцание , поглощение , задержку распространения , дисперсию , изменение частоты , вращение плоскости поляризации . Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико.

Сигналы с относительно низкой частотой (L-диапазон и частично C-диапазон) страдают от ионосферного мерцания , возникающего из-за неоднородностей в ионосфере. Результатом этого мерцания является постоянно меняющаяся мощность сигнала.

Задержка распространения сигнала

Проблема задержки распространения сигнала так или иначе затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс .

Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом, если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.

В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.

Влияние солнечной интерференции

См. также

  • ОАО «Информационные спутниковые системы» имени академика М. Ф. Решетнёва»

Примечания

  1. Вишневский В. И., Ляхов А. И., Портной С. Л., Шахнович И. В. Исторический очерк развития сетевых технологий // Широкополосные сети передачи информации. - Монография (издание осуществлено при поддержке Российского фонда фундаментальных исследований). - М .: «Техносфера», 2005. - С. 20. - 592 с. - ISBN 5-94836-049-0
  2. Communications Satellite Short History. The Billion Dollar Technology
  3. Communications Satellite Short History. The Global Village: International Communications
  4. INTELSAT Satellite Earth Station Handbook, 1999, p. 18
  5. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. - М.: Издательский дом «Вильямс», 2004
  6. Официальный сайт компании «Интерспутник»
  7. Концептуально-правовые вопросы широкополосных спутниковых мультисервисных сетей
  8. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 167
  9. INTELSAT Satellite Earth Station Handbook, 1999, p. 2
  10. INTELSAT Satellite Earth Station Handbook, 1999, p. 73
  11. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, pp. 6, 108
  12. INTELSAT Satellite Earth Station Handbook, 1999, p. 28
  13. Recommendation ITU-R V.431-6. Nomenclature of the frequency and wavelength bands used in telecommunications
  14. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, pp. 6, 256
  15. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 264
  16. http://www.telesputnik.ru/archive/116/article/62.html Стандарт DVB-S2. Новые задачи - новые решения//Журнал по спутниковому и кабельному телевидению и телекоммуникациям «Телеспутник»
  17. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 283
  18. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение / пер. с англ. В. Б. Афанасьева . - М .: Техносфера, 2006. - 320 с. - (Мир связи). - 2000 экз. - ISBN 5-94836-035-0
  19. Dr. Lin-Nan Lee LDPC Codes, Application to Next Generation Communication Systems // IEEE Semiannual Vehicular Technology Conference . - October, 2003.
  20. Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. - 2 изд. - М .: «Вильямс», 2007. - С. 1104. - ISBN 0-13-084788-7
  21. Система спутниковой связи и вещания «Ямал»
  22. VSAT FAQ
  23. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 68
  24. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 91
  25. Dennis Roddy. Satellite Communications. McGraw-Hill Telecommunications, 2001, p. 93
  26. Bruce R. Elbert. The Satellite Communication Applications Handbook. - Artech House, Inc., 2004, p. 34.

Ссылки

  • WTEC Panel Report on Global Satellite Communications Technology and Systems (англ.)
  • О спутнике Early Bird на сайте boeing.com (англ.)
  • Communications Satellites Short History (англ.)
  • VSAT FAQ (англ.)
  • VSAT FAQ (рус.)
  • Satellite Internet and VSAT Information Centrum (англ.)
  • Satellite Communications and Space Weather (англ.)
  • Satellite Communications in the Global Internet: Issues, Pitfalls, and Potential (англ.)
  • Спутниковые технологии телекоммуникаций на современном этапе (рус.)

Литература

  1. INTELSAT Satellite Earth Station Handbook
  2. Dennis Roddy. Satellite Communications. - McGraw-Hill Telecommunications, 2001.
  3. Bruce R. Elbert. The Satellite Communication Applications Handbook. - Artech House, Inc., 2004. - ISBN 1-58053-490-2
  4. Ascent to Orbit, a Scientific Autobiography: The Technical Writings of Arthur C. Clarke. - New York: John Wiley & Sons, 1984.

МОУ Парабельская гимназия

Реферат

Спутниковые системы связи

Выполнил

Горошкина Ксения

ученица 11 класса

Проверил

Борисов Александр Владимирович

Парабель

2010 год

Введение 3

1. Принципы организации спутниковых каналов связи 4

2. Орбиты спутников связи 5

3. Типовая схема организации услуг спутниковой связи 6

4. Сферы применения спутниковой связи 6

4.1.Принципы организации спутниковой связи VSAT 7

4.2.Принципы организации подвижной спутниковой связи 7

5. Технологии, используемые в спутниковой связи 8

6. История создания спутниковых систем связи 11

6.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1" 12

6.2. Первая в мире спутниковая система "Орбита" для распределения ТВ-программ 13

6.3. Первая в мире система непосредственного ТВ-вещания "Экран" 14

6.4. Системы распределения ТВ-программ "Москва" и "Москва-Глобальная 15

6.5. Система спутникового ТВ-вещания в диапазоне 12 ГГц 16

6.6. Создание системы "Интерспутник" 16

6.7. Создание спутниковой линии правительственной связи 17

6.8. В заключении… 17

Список используемой литературы 20

Введение

Спутниковые системы связи (ССC) известны давно, и используются для передачи различных сигналов на протяженные расстояния. С момента своего появления спутниковая связь стремительно развивалась, и по мере накопления опыта, совершенствования аппаратуры, развития методов передачи сигналов произошел переход от отдельных линий спутниковой связи к локальным и глобальным системам.

Такие темпы развития ССC объясняются рядом достоинств которыми они обладают. К ним, в частности, относятся большая пропускная способность, неограниченные перекрываемые пространства, высокое качество и надежность каналов связи. Эти достоинства, которые определяют широкие возможности спутниковой связи, делают ее уникальным и эффективным средством связи. Спутниковая связь в настоящее время является основным видом международной и национальной связи на большие и средние расстояния. Использование искусственных спутников Земли для организации связи продолжает расширяться по мере развития существующих сетей связи. Многие страны создают собственные национальные сети спутниковой связи.

В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.

В своем реферате я рассмотрю принципы организации спутниковых систем, сферы применения, историю создания ССС. В наше время спутниковому вещанию уделяется большое внимание, поэтому мы должны знать принцип работы системы.

1. Принципы организации спутниковых каналов связи

Спутниковая связь - один из видов радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов.

Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными. Спутниковая связь является развитием традиционной радиорелейной связи путем вынесения ретранслятора на очень большую высоту (от сотен до десятков тысяч км). Так как зона его видимости в этом случае - почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает. Для передачи через спутник сигнал должен быть модулирован. Модуляция производится на земной станции. Модулированный сигнал усиливается, переносится на нужную частоту и поступает на передающую антенну.

В первые годы исследований использовались пассивные спутниковые ретрансляторы, которые представляли собой простой отражатель радиосигнала (часто - металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными. Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. Спутниковые ретрансляторы могут быть нерегенеративными и регенеративными.

Нерегенеративный спутник, приняв сигнал от одной земной станции, переносит его на другую частоту, усиливает и передает другой земной станции. Спутник может использовать несколько независимых каналов, осуществляющих эти операции, каждый из которых работает с определенной частью спектра (эти каналы обработки называются транспондерами).

Регенеративный спутник производит демодуляцию принятого сигнала и заново модулирует его. Благодаря этому исправление ошибок производится дважды: на спутнике и на принимающей земной станции. Недостаток этого метода - сложность (а значит, гораздо более высокая цена спутника), а также увеличенная задержка передачи сигнала.

2. Орбиты спутников связи

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

1 - экваториальные, 2 - наклонные, 3 - полярные

Важной разновидностью экваториальной орбиты является геостационарная орбита , на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно. Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является больша́я высота, а значит, и бо́льшая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите неспособен обслуживать земные станции в приполярной области.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная орбита - предельный случай наклонной.

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки. Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.

3. Типовая схема организации услуг спутниковой связи

  • оператор спутникового сегмента создает за счет собственных средств спутник связи, размещая заказ на изготовление спутника у одного из производителей спутников, и осуществляет его запуск и обслуживание. После выведения спутника на орбиту оператор спутникового сегмента начинает предоставление услуг по сдаче в аренду частотного ресурса спутника-ретранслятора компаниям-операторам услуг спутниковой связи.
  • компания-оператор услуг спутниковой связи заключает договор с оператором спутникового сегмента на использование (аренду) емкостей на спутнике связи, используя его в качестве ретранслятора с большой территорией обслуживания. Оператор услуг спутниковой связи выстраивает наземную инфраструктуру своей сети на определенной технологической платформе, выпускаемой компаниями-производителями наземного оборудования для спутниковой связи.

4. Сферы применения спутниковой связи:

  • Магистральная спутниковая связь: Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных. С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.
  • Системы VSAT : системы VSAT (Very Small Aperture Terminal - терминал с очень маленькой апертурой антенны) предоставляют услуги спутниковой связи клиентам (как правило, небольшим организациям), которым не требуется высокая пропускная способность канала. Скорость передачи данных для VSAT-терминала обычно не превышает 2048 кбит/с. Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне - 0,75-1,8 м. В системах VSAT применяется технология предоставления каналов по требованию.
  • Системы подвижной спутниковой связи : особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.

4.1.Принципы организации спутниковой связи VSAT:

Основной элемент спутниковой сети VSAT - ЦУС. Именно Центр Управления Сетью обеспечивает доступ клиентского оборудования с сети интернет, телефонной сети общего пользования, другим терминалам сети VSAT, реализует обмен трафиком внутри корпоративной сети клиента. ЦУС имеет широкополосное подключение к магистральным каналам связи, предоставляемым магистральными операторами и обеспечивает передачу информации от удаленного VSAT-терминала во внешний мир.

4.2.Принципы организации подвижной спутниковой связи:

Для того, чтобы мощность сигнала, достигающего мобильного спутникового приемника, была достаточной, применяют одно из двух решений:

  • Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик.
  • Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов.
  • Оборудование клиента (мобильные спутниковые терминалы, спутниковые телефоны) взаимодействует с внешним миром или друг с другом посредством спутника-ретранслятора и станций сопряжения оператора услуг мобильной спутниковой связи, обеспечивающих подключение к внешним наземным каналам связи (телефонной сети общего пользования, сети интернет и пр.)

5. Технологии, используемые в спутниковой связи

М ногократное использование частот в спутниковой связи. Поскольку радиочастоты являются ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами:

  • пространственное разделение - каждая антенна спутника принимает сигнал только с определенного района, при этом разные районы могут использовать одни и те же частоты.
  • поляризационное разделение - различные антенны принимают и передают сигнал во взаимно перпендикулярных плоскостях поляризации, при этом одни и те же частоты могут применяться два раза (для каждой из плоскостей).

Ч астотные диапазоны.

Выбор частоты для передачи данных от земной станции к спутнику и от спутника к земной станции не является произвольным. От частоты зависит, например, поглощение радиоволн в атмосфере, а также необходимые размеры передающей и приемной антенн. Частоты, на которых происходит передача от земной станции к спутнику, отличаются от частот, используемых для передачи от спутника к земной станции (как правило, первые выше). Частоты, используемые в спутниковой связи, разделяют на диапазоны, обозначаемые буквами:

Название диапазона

Частоты

Применение

Подвижная спутниковая связь

Подвижная спутниковая связь

4 ГГц, 6 ГГц

Фиксированная спутниковая связь

Для спутниковой связи в этом диапазоне частоты не определены. Для приложений радиолокации указан диапазон 8-12 ГГц.

Фиксированная спутниковая связь (для военных целей)

11 ГГц, 12 ГГц, 14 ГГц

Фиксированная спутниковая связь, спутниковое вещание

Фиксированная спутниковая связь, межспутниковая связь

Ku-диапазон позволяет производить прием сравнительно небольшими антеннами, и поэтому используется в спутниковом телевидении (DVB), несмотря на то, что в этом диапазоне погодные условия оказывают существенное влияние на качество передачи. Для передачи данных крупными пользователями (организациями) часто применяется C-диапазон. Это обеспечивает более высокое качество приема, но требует довольно больших размеров антенны.

М одуляция и помехоустойчивое кодирование

Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум, вызванного несколькими факторами:

  • значительной удаленностью приемника от передатчика,
  • ограниченной мощностью спутника

Спутниковая связь плохо подходит для передачи аналоговых сигналов. Поэтому для передачи речи её предварительно оцифровывают, используя импульсно-кодовую модуляцию.
Для передачи цифровых данных по спутниковому каналу связи они должны быть сначала преобразованы в радиосигнал, занимающий определенный частотный диапазон. Для этого применяется модуляция (цифровая модуляция называется также манипуляцией).

Из-за низкой мощности сигнала возникает необходимость в системах исправления ошибок. Для этого применяются различные схемы помехоустойчивого кодирования, чаще всего различные варианты сверточных кодов, а также турбо-коды.

6. История создания спутниковых систем связи

Идея создания на Земле глобальных систем спутниковой связи была выдвинута в 1945 г. Артуром Кларком , ставшим впоследствии знаменитым писателем-фантастом. Реализация этой идеи стала возможной только через 12 лет после того, как появились баллистические ракеты, с помощью которых 4 октября 1957 г. на орбиту был запущен первый искусственный спутник Земли (ИСЗ). Для контроля за полетом ИСЗ на нем был помещен маленький радиопередатчик - маяк, работающий в диапазоне 27 МГц . Через несколько лет 12 апреля 1961 г . впервые в мире на советском космическом корабле "Восток" Ю.А. Гагарин совершил исторический облет Земли. При этом космонавт имел регулярную связь с Землей по радио. Так началась систематическая работа по изучению и использованию космического пространства для решения различных мирных задач.

Создание космической техники сделало возможным развитие очень эффективных систем дальней радиосвязи и вещания. В США начались интенсивные работы по созданию связных спутников. Такие работы начали разворачиваться и в нашей стране. Ее огромная территория и слабое развитие связи, особенно в малонаселенных восточных районах, где создание сетей связи с помощью других технических средств (РРЛ, кабельные линии и др.) сопряжено с большими затратами, делало этот новый вид связи весьма перспективным.

У истоков создания отечественных спутниковых радиосистем стояли выдающиеся отечественные ученые и инженеры, возглавлявшие крупные научные центры: М.Ф. Решетнев, М.Р. Капланов, Н.И. Калашников, Л.Я. Кантор

Основные задачи, ставящиеся перед учеными, состояли в следующем:

Разработка спутниковых ретрансляторов телевизионного вещания и связи ("Экран", "Радуга", "Галс"), с 1969 г. спутниковые ретрансляторы разрабатывались в отдельной лаборатории, возглавляемой М.В. Бродским ;

Создание системных проектов построения спутниковой связи и вещания;

Разработка аппаратуры земных станций (ЗС) спутниковой связи: модуляторов, порогопонижающих демодуляторов ЧМ (частотной модуляции) сигналов, приемных и передающих устройств и др.;

Проведение комплексных работ по оснащению оборудованием станций спутниковой связи и вещания;

Разработка теории следящих ЧМ демодуляторов со сниженным шумовым порогом, методов многостанционного доступа, методов модуляции и помехоустойчивого кодирования;

Разработка нормативно-технической документации на каналы, тракты телевизионного и связного оборудования спутниковых систем;

Разработка систем управления и контроля ЗС и сетями спутниковой связи и вещания.

Специалистами НИИР были созданы многие национальные спутниковые системы связи и вещания, находящиеся в эксплуатации и поныне . Приемо-передающее наземное и бортовое оборудование этих систем также было разработано в НИИР. Помимо оборудования специалисты института предложили методики проектирования как самих спутниковых систем, так и отдельных, входящих в их состав устройств. Опыт проектирования спутниковых систем связи специалистов НИИР отражен в многочисленных научных публикациях и монографиях.

6.1. Первые спутниковые линии связи и вещания через ИСЗ "Молния-1"

Первые эксперименты по спутниковой связи путем отражения радиоволн от американского отражающего спутника "Эхо" и Луны, используемых в качестве пассивных ретрансляторов, проводились специалистами НИИР в 1964 г . Радиотелескопом в обсерватории в поселке Зименки Горьковской области были приняты телеграфные сообщения и простой рисунок из английской обсерватории "Джодрелл Бэнк".

Этот эксперимент доказал возможность успешного использования космических объектов для организации связи на Земле.

В лаборатории спутниковой связи были подготовлены несколько системных проектов, а затем она приняла участие в разработке первой отечественной системы спутниковой связи "Молния-1" в диапазоне частот ниже 1 ГГц. Головной организацией по созданию этой системы был Московский научно-исследовательский институт радиосвязи (МНИИРС). Главным конструктором системы "Молния-1" является М.Р. Капланов - заместитель руководителя МНИИРС.

В 60-е годы в НИИР велась разработка приемо-передающего комплекса тропосферной радиорелейной системы "Горизонт", также работающей в диапазоне частот ниже 1 ГГц. Этот комплекс был модифицирован и созданная аппаратура, названная "Горизонт-К", использовалась для оснащения первой спутниковой линии связи "Молния-1", связавшей Москву и Владивосток. Эта линия предназначалась для передачи ТВ-программы или группового спектра 60 телефонных каналов. При участии специалистов НИИР в этих городах были оборудованы две земные станции (ЗС). В МНИИРС был разработан бортовой ретранслятор первого искусственного спутника связи "Молния-1", успешный запуск которого состоялся 23 апреля 1965 г . Он был выведен на высокоэллиптическую орбиту с периодом обращения вокруг Земли 12 ч. Такая орбита была удобна для обслуживания территории СССР, рас положенной в северных широтах, так как в течение восьми часов на каждом витке ИСЗ был виден с любой точки страны. Кроме того, запуск на такую орбиту с нашей территории осуществляется с меньшими затратами энергии, чем на геостационарную. Орбита ИСЗ "Молния-1" сохранила свое значение до сих пор и используется, несмотря на преобладающее развитие геостационарных ИСЗ.

6.2. Первая в мире спутниковая система "Орбита" для распределения ТВ-программ

После завершения исследований технических возможностей ИСЗ "Молния-1" специалистами НИИР Н.В. Талызиным и Л.Я. Кантором было предложено решить проблему подачи ТВ-программ центрального телевидения в восточные районы страны путем создания первой в мире системы спутникового вещания "Орбита" в диапазоне 1 ГГц на базе аппаратуры "Горизонт-К".

В 1965-1967 гг. в рекордно короткие сроки в восточных районах нашей страны было одновременно сооружено и введено в действие 20 земных станций "Орбита" и новая центральная передающая станция "Резерв". Система "Орбита" стала первой в мире циркулярной, телевизионной, распределительной спутниковой системой, в которой наиболее эффективно использованы возможности спутниковой связи.

Следует отметить, что диапазон, в котором работала новая система "Орбита" 800-1000 МГц, не соответствовал тому, который был распределен в соответствии с Регламентом радиосвязи для фиксированной спутниковой службы. Работа по переводу системы "Орбита" в С-диапазон 6/4 ГГц была выполнена специалистами НИИР в период 1970-1972 гг. Станция, функционирующая в новом диапазоне частот, получила название "Орбита-2". Для нее был создан полный комплекс аппаратуры для работы в международном диапазоне частот - на участке Земля-Космос - в диапазоне 6 ГГц, на участке Космос-Земля - в диапазоне 4 ГГц. Под руководством В.М. Цирлина была разработана система наведения и автосопровождения антенн с программным устройством. В этой системе использовались экстремальный автомат и метод конического сканирования.

Станции "Орбита-2" начали внедряться с 1972 г ., а к концу 1986 г . их было построено около 100. Многие из них и в настоящее время являются действующими приемо-передающими станциями.

В дальнейшем для работы сети "Орбита-2" был создан и выведен на орбиту первый советский геостационарный ИСЗ "Радуга", многоствольный бортовой ретранслятор которого создавался в НИИР (руководитель работы А.Д. Фортушенко и ее участники М.В. Бродский, А.И. Островский, Ю.М. Фомин и др.) При этом были созданы и освоены технология изготовления и методы наземной обработки космических изделий.

Для системы "Орбита-2" были разработаны новые передающие устройства "Градиент" (И.Э. Мач, М.З. Цейтлин и др.), а также параметрические усилители (А.В. Соколов, Э.Л. Ратбиль, B.C. Санин, В.М. Крылов) и устройства приема сигналов (В.И. Дьячков, В.М. Доро феев, Ю.А. Афанасьев, В.А. Полухин и др.).

6.3. Первая в мире система непосредственного ТВ-вещания "Экран"

Широкое развитие системы "Орбита", как средства подачи ТВ-программ, в конце 70-х годов стало экономически неоправданным из-за большой стоимости ЗС, делающей нецелесообразной ее установку в пункте с населением менее 100-200 тыс. человек. Более эффективной оказалась система "Экран", работающая в диапазоне частот ниже 1 ГГц и имеющая большую мощность передатчика бортового ретранслятора(до 300 Вт). Целью создания этой системы было охват ТВ-вещанием малонаселенных пунктов в районах Сибири, Крайнего Севера и части Дальнего Востока. Для ее реализации были выделены частоты 714 и 754 МГц, на которых было возможно создать достаточно простые и дешевые приемные устройства. Система "Экран" стала фактически первой в мире системой непосредственного спутникового вещания.

Приемные установки этой системы должны были быть рентабельными как для обслуживания небольших населенных пунктов, так и для индивидуального приема ТВ-программ.

Первый спутник системы "Экран" был запущен 26 октября 1976 г . на геостационарную орбиту в точку 99° в.д. Несколько позднее в Красноярске были выпущены станции коллективного приема "Экран-КР-1" и "Экран-КР-10" с мощностью выходного телевизионного передатчика 1 и 10 Вт. Земная станция, передающая сигналы на ИСЗ "Экран", имела антенну с диаметром зеркала 12 м, она была оборудована передатчиком "Градиент" мощностью 5 кВт, работающим в диапазоне 6 ГГц. Приемные установки этой системы, разработанные специалистами НИИР, были наиболее простыми и дешевыми приемными станциями из всех, реализованных в те годы. К концу 1987 г. число установленных станций "Экран" достигло 4500 шт.

6.4.Системы распределения ТВ-программ "Москва" и "Москва-Глобальная"

Дальнейший прогресс в развитии систем спутникового ТВ-вещания в нашей стране связан с созданием системы "Москва", в которой технически устаревшие ЗС системы "Орбита, были заменены на малые ЗС. Разработка малых ЗС началась в 1974 г. по инициативе Н.В. Талызина и Л.Я. Кантора.

Для системы "Москва" на ИСЗ "Горизонт" был предусмотрен ствол повышенной мощности, работающий в диапазоне 4 ГГц на узконаправленную антенну. Энергетические соотношения в системе были выбраны таким образом, что обеспечивали применение на приемной ЗС небольшой параболической антенны с диаметром зеркала 2,5 м без автоматического наведения. Принципиальной особенностью системы "Москва" являлось строгое соблюдение норм на спектральную плотность потока мощности у поверхности Земли, установленных Регламентом ради связи для систем фиксированной службы . Это позволяло использовать эту систему для ТВ-вещания на всей территории СССР. Система обеспечивала прием с высоким качеством центральной ТВ-программы и программы радиовещания. Впоследствии в системе был создан еще один канал, предназначенный для передачи газетных полос.

Эти станции получили также широкое распространение в отечественных учреждениях, расположенных за рубежом (в Европе, на севере Африки и ряде других территорий), что дало возможность нашим гражданам за рубежом принимать отечественные программы. При создании системы "Москва" был использован ряд изобретений и оригинальных решений, позволивших усовершенствовать как построение самой системы, так и ее аппаратурные комплексы. Эта система послужила прототипом для многих спутниковых систем, созданных позже в США и Западной Европе, в которых для подачи программ ТВ на ЗС малого размера и умеренной стоимости использовались ИСЗ средней мощности, работающие в диапазоне фиксированной спутниковой службы.

В течение 1986-1988 гг. была проведена разработка специальной системы "Москва-Глобальная" с малыми ЗС, предназначенной для подачи центральных ТВ-программ в отечественные представительства за рубежом, а также для передачи небольшого объема дискретной информации. Эта система также находится в эксплуатации. В ней предусмотрена организация одного ТВ-канала, трех каналов для передачи дискретной информации со скоростью 4800 бит/с и двух каналов со скоростью 2400 бит/с. Каналы передачи дискретной информации использовались в интересах Комитета по телевидению и радиовещанию, ТАСС и АПН (Агентство политических новостей). Для охвата практически всей территории Земного шара в ней используются два спутника, расположенные на геостационарной орбите на 11° з.д. и 96° в.д. Приемные станции имеют зеркало диаметром 4 м, аппаратура может располагаться как в специальном контейнере, так и в помещении.

6.5. Система спутникового ТВ-вещания в диапазоне 12 ГГц

С 1976 г . в НИИР начались работы по созданию принципиально новой в те годы системы спутникового телевидения в выделенном по международному плану для такого спутникового ТВ-вещания диапазоне частот 12 ГГц (СТВ-12), которая не имела бы ограничений по излучаемой мощности, присущих системам "Экран" и "Москва" и могла бы обеспечить охват всей территории нашей страны многопрограммным ТВ-вещанием, а также обмен программами и решение проблемы республиканского вещания. В создании этой системы НИИР являлся головной организацией.

Специалисты института провели исследования, определившие оптимальные параметры данной системы, и разработали многоствольные бортовые ретрансляторы и оборудование передающей и приемной ЗС. На первом этапе развития этой системы использовался отечественный спутник "Галс", сигналы передавались в аналоговом виде, использовалось импортное приемное оборудование. Позже был осуществлен переход на цифровое оборудование на базе иностранного спутника, а также передающего и приемного оборудования.

6.6. Создание системы "Интерспутник"

В 1967 г. началось развитие международного сотрудничества социалистических стран в области спутниковой связи. Целью его было создание международной спутниковой системы "Интерспутник", предназначенной для удовлетворения потребностей Болгарии, Венгрии, Германии, Монголии, Польши, Румынии, СССР и Чехословакии в телефонной связи, передаче данных и обмене ТВ-программами. В 1969 г. были разработаны проект этой системы, юридические основы организации "Интерспутник", а в 1971 г. подписано соглашение о ее создании.

Система "Интерспутник" стала второй в мире между народной системой спутниковой связи (после системы "Интелсат"). Специалисты НИИР разработали проекты ЗС, которые при содействии СССР были построены во многих странах социалистического содружества. Первая ЗС за рубежом была создана на Кубе, а вторая - в Чехословакии. Всего НИИР поставил за рубеж более десяти ЗС для приема программ ТВ, ЗВ и специального назначения.

Вначале в "Интерспутнике" использовался ИСЗ типа "Молния-3" на высокоэллиптической орбите, а с 1978 г. -два многоствольных геостационарных спутника типа "Горизонт" с точками стояния 14° з.д. и 53° (а затем 80°) в.д. На ЗС первоначально был установлен передатчик "Градиент-К" и приемный комплекс "Орбита-2".

Все системные и технические решения по созданию системы "Интерспутник", а также аппаратура ЗС создавались специалистами НИИР совместно с опытным заводом НИИР "Промсвязьрадио" и организациями-соисполнителями. Система "Интерспутник" находится в эксплуатации и сегодня, арендуя стволы космической группировки РФ, а также используя свой геостационарный спутник LMI-1, находящийся на позиции 75° в.д. Работы проводились в кооперации с ПО "Искра" (Красноярск), Московским и Подольским радиотехническими заводами.

Руководителем работ был С.В. Бородич .

6.7. Создание спутниковой линии правительственной связи

В 1972 г . было заключено межправительственное соглашение между СССР и США о создании прямой линии правительственной связи (ЛПС) между главами государств на случай чрезвычайных обстоятельств. Выполнение этого важного правительственного соглашения было поручено специалистам НИИР. Главным конструктором разработки ЛПС стал В.Л. Быков , а ответственными исполнителями - И.А. Ястребцов, А.Н. Воробьев.

На территории СССР были созданы две ЗС: одна (в Дубне под Москвой), вторая (в Золочеве под Львовом). Ввод ЛПС в эксплуатацию состоялся в 1975 г . Она действует через ЗС "Дубна" до настоящего времени. Это был первый опыт работы по созданию отечественными специалистами спутниковой линии в международной системе "Интелсат".

6.8. В заключении…

В 1960-1980 гг. специалисты НИИР решали весьма важные для нашего государства и сложные в техническом отношении проблемы создания национальных систем спутниковой связи и вещания.

· Были созданы системы распределения ТВ-программ на обширной территории нашей страны, в том числе - непосредственного спутникового телевещания. Многие системы, созданные в НИИР, были первыми в мире: "Орбита", "Экран", "Москва" и др. Оборудование наземной части этих систем, а также бортовое оборудование - также разработка НИИР, оно производилось отечественной промышленностью.

· Спутниковые системы связи и вещания позволили удовлетворить потребности десятков миллионов граждан нашей страны, особенно тех, кто проживали в малонаселенных районах Западной Сибири и Дальнего Востока. С созданием спутниковых систем в этих регионах у граждан впервые появилась возможность принимать программы центрального телевидения в реальном времени.

· Внедрение спутниковых систем имело исключительно важное значение для экономического и социального развития как труднодоступных регионов Сибири и Дальнего Востока, так и всей страны.

· Население Сахалина, Камчатки, Хабаровского края и многих других отдаленных территорий получило доступ к телефонной сети общего пользования.

· Ученые НИИР выполнили оригинальные научные исследования, направленные на создание методик расчета разного рода устройств, применяемых в системах спутниковой связи. Ими также была создана методологии проектирования систем спутниковой связи и написан ряд фундаментальных монографий и научных статей по проблемам спутниковой связи.

Вывод

Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. В России, где расстояния между населенными пунктами огромное, а качество наземных линий оставляет желать лучшего, оптимальным решением этого вопроса является применение систем спутниковой связи (ССС).

Изначально ССС использовались для передачи ТВ-сигнала. Наша страна характеризуется обширной территорией, которую нужно охватить средствами коммуникации. Сделать это стало проще после появления спутниковой связи, а именно системы Орбита-2. Позже появились спутниковые телефоны, главным преимуществом которых является независимость от наличия каких-либо местных телефонных сетей. Качественная телефонная связь доступна из практически любой точки земного шара.

В рамках президентской программы «Универсальная услуга связи» в каждом населенном пункте были установлены таксофоны, в особо отдаленных районах были использованы именно спутниковые таксофоны.

Согласно федеральной целевой программы «Развитие телерадиовещания в Российской Федерации на 2009-2015 годы» происходит внедрение цифрового вещания в России. Программа полностью профинансирована, в том числе средства пойдут и на создание многофункциональных спутников.

Список используемой литературы

1. Интернет-ресурс «История спутниковой связи» http://sviazist.nnov.ru/modules/myarticles/article.php?storyid=1026

2.Интернет-ресурс «Принципы организации спутниковой связи» http://vsatinfo.ru/index.php?option=com_sobi2&catid=30&Itemid=0

3. Интернет ресурс «Свободная энциклопедия»

http://ru.wikipedia.org


Рецензия

на реферат «Спутниковые системы связи»

Ученицы 11 кл. МОУ Парабельской гимназии

Горошкиной Ксении

Тема реферата раскрыта полностью. Материал всех разделов интересный, изложен доступно и чётко. Хорошие иллюстрации. Структура реферата соблюдена. Работу можно использовать как учебное пособие для учащихся.

Оценка «ОТЛИЧНО»

Эксперт: Борисов А. В. учитель физики

Наболевшие проблемы решаемы цепочкой космических станций периодом обращения 24 часа, оккупировавших высоту 42000 км относительно центра Земли… в плоскости экватора.

А. Кларк, 1945 год.

В каменном веке связная сеть работает путём многократного повторения действий по регулированию объёма испускаемого костром дыма. Земля знала скороходов, лучшим стал Маленький Мук. Современная система использует космические летательные аппараты. Плюсом спутника назовём большое покрытие территории. Волны используют преимущественно короткие, способные распространяться по прямой. Мир один – везде свои цены…

Предпосылки использования

Идею ретрансляции зародил Эмиль Гуарини-Форезио в 1899 году. Концепцию опосредованной передачи сигнала опубликовал немецкий Журнал для электротехника (том 16, 35-36). Артур Кларк в 1945 году озвучил концепцию системы связи меж геостационарными космическими аппаратами. Писатель отказался брать патент, отнекиваясь двумя умозаключениями:

  1. Малая вероятность осуществления задумки.
  2. Необходимость подарить идею человечеству целиком.

Одновременно учёный указал координаты наилучшего покрытия областей поверхности планеты:

  • 30 градусов в.д. – Африка, Европа.
  • 150 градусов в.д. – Китай, Океания.
  • 90 градусов з.д. – Америка.

Писатель занизил рабочую частоту, высказав намерение применить 3 МГц, уменьшив гипотетические рефлекторы (несколько футов).

Наземные системы СВЧ

Англо-французский консорциум, возглавляемый Андре Клавиром, пошёл дальше. Первые успешные попытки использования диапазона СВЧ связью датированы 1931 годом. Английский Канал продемонстрировал передачу информации частотой 1,7 ГГц (современный сотовый диапазон) на 64 километра станциями, оснащёнными тарелками диаметром 3 метра, соединяя Дувр и Кале.

Интересно! Первый коммерческий телевизионный канал УКВ использовал частоту 300 МГц.

Историки склонны считать Вторую мировую войну лошадкой, вывезшей отрасль на вершину. Изобретение клистрона, усовершенствование технологий изготовления параболоидов внесли неоценимый вклад. Расцвет трансатлантических отношений датируется 50-ми годами XX века.

Для справки! Первая релейная линия, образованная восемью ретрансляторами, Нью-Йорк – Бостон, построена в 1947 году.

Америка и Европа наладили передачу информации ретрансляторами (радиосвязь, называемая релейной). Немедля началось коммерческое телевещание. Особенностью СВЧ связи называют возможность точного предсказания результата уже на этапе проектирования системы.

Для справки! Релейная связь – технология передачи цифровых, аналоговых сигналов меж приёмниками, находящимися в поле видимости.

Космические аппараты

Первый советский спутник (1957 год) нёс связную аппаратуру. Тремя годами позже американцы подняли на высоту 1500 км надувной шар, служивший пассивным ретранслятором, благодаря металлизированному покрытию сферы. 20 августа 1964 года 11 стран, включая СССР, подписали договор о создании Intelsat (международная связь). Советский блок шёл путём секретности, пока запад зарабатывал. Восточный блок создал собственную программу в 1971 году.

Спутники явились настоящей находкой, позволяя соединить противоположные берега океана. Альтернативой выступает оптическое волокно.

Первыми тёмную лошадку запустили военные наравне с тропосферной связью, использовавшей эффект отражения волны верхними слоями. Советскую микроволновую связь перехватывала небесная группа Риолит. Система, разработанная для ЦРУ (США). Аппарат занимал позицию, захватываемую наземным лучом советской релейной связи, записывая послания. Контролировались территории Китая, Восточной Европы. Диаметр зонтоподобных рефлекторов достигал 20 метров.

Руководство США всегда знало намерения руководителей СССР, прослушивая все, вплоть до телефонных звонков. Сегодня спутниковые системы позволяют, благодаря эффекту Допплера, дистанционно посещать любые «конфиденциальные» беседы, проводимые в помещениях, снабжённых типичным оконным стеклопакетом.

Зарегистрированы первые попытки осуществить идеи Николы Тесла в космосе: беспроводная передача электроэнергии спутниковыми антеннами. Эпопея стартовала в 1975 году. Ныне концепция вернулась домой. Башня Ворденклифф давно разрушена, однако главный остров Гавайи получил свою порцию 20 Вт беспроводным путём.

Для справки! Использование космической связи оказалось экономически оправданной альтернативой оптического волокна.

Особенности сигнала

Неудивительно использование спутников, учитывая сказанное.

Окна прозрачности

Явление поглощения атмосферой волн известно давно. Учёные, исследовав феномен, заключили:

  • Затухание сигнала определено частотой.
  • Наблюдаются окна прозрачности.
  • Явление модулируется погодными условиями.

Например, миллиметровый диапазон (30-100 ГГц) сильно угнетается дождём. Окрестности частоты 60 ГГц поглощают молекулы кислорода, 22 ГГц – водой. Частоты ниже 1 ГГц отсекаются излучениями галактики. Негативное влияние оказывают температурные шумы атмосферы.

Сказанное объясняет выбор современных частот космической связи. Полный перечень характеристик сигнала Ku-диапазона демонстрирует рисунок.

Используется также С-диапазон.

Зоны приёма

Луч, пересекая поверхность Земного шара, формирует изотропные кривые эквивалентного приёма. Суммарные потери составляют:

  1. 200 дБ – С-диапазон.
  2. 206 дБ – Ku-диапазон.

Солнечные помехи способны помешать ловле пакетов. Наихудшие условия длительностью 5-6 дней создаются межсезоньем (зима, осень). Интерференция светила снабжает техников наземных станций гарантированной работой. На время природного явления отключают системы слежения. Иначе тарелки могут поймать Солнце, отдав неправильные команды бортовым системам стабилизации. Банки, аэропорты получают предупреждение: связь временно нарушится.

Зоны Френеля

Препятствия вокруг вышки связи провоцируют сложение волн, формируя зоны затухания/подъёма сигнала. Феномен объясняет необходимость наличия чистого пространства близ приёмопередатчика. К счастью, СВЧ лишены указанного недостатка. Благодаря важной особенности, каждый дачник ловит НТВ+ тарелкой.

Мерцания

Непредсказуемые изменения атмосферы заставляют сигнал постоянно меняться. Колебания до 12 дБ амплитудой затрагивают полосу шириной 500 МГц. Явление длится 2-3 часа максимум. Мерцания мешают наземным станциям отслеживать спутник, требуя принятия превентивных мер.

Линейность луча

Особенностью СВЧ считают прямолинейную траекторию луча. Явление позволяет сконцентрировать мощность, понижая требования к бортовым системам. Наверняка первоначальной задачей стал шпионаж. Позже антенны перестали быть узконаправленными, покрывая громадные территории, как например, Россия.

Инженеры называют свойство недостатком: невозможно обогнуть горы, овраги.

Особенности сложения волн

Практически отсутствует интерференционная картина. Позволительно значительно уплотнить соседние частотные каналы.

Ёмкость

Теорема Котельникова определяет верхнюю границу спектра передаваемого сигнала. Порог напрямую задан частотой несущей. СВЧ, благодаря высоким значениям, вмещают до 30 раз больше информации, нежели УКВ.

Возможность регенерации

Развитие цифровых технологий открыло дорогу методикам коррекции ошибок. Искусственный спутник:

  • принимал слабый сигнал;
  • декодировал;
  • исправлял ошибки;
  • кодировал;
  • передавал дальше.

Превосходное качество спутниковой связи стало «притчей во языцах».

Наземные антенны

Спутниковые тарелки называют параболоидами. Диаметр достигает 4 метра. Помимо указанных доступны 2 вида антенн релейной связи (оба наземные):

  1. Диэлектрические линзы.
  2. Рупорные антенны.

Параболоиды обеспечивают высокую избирательность, позволяя установить связь, преодолевшему тысячи километров лучу. Типичная тарелка неспособна передать сигнал, требуются более высокие характеристики.

Принцип действия

Спутники шпионы постоянно двигались, обеспечивая относительную неуязвимость и скрытность наблюдения. Использование мирных технологий пошло иным путём. Реализована концепция Кларка:

  • Экваториальная орбита служит пристанищем сотен геостационарных спутников.
  • Непоколебимость положения обеспечивает простоту наведения наземного оборудования.
  • Высота орбиты (35786 метров) фиксированная, поскольку необходимо уравновесить силой центробежной земное тяготение.

Аппарат покрывает часть территории планеты.

Система Intelsat сформирована 19-ю спутниками, сгруппированными по четырём регионам. Абонент видит 2-4 одновременно.

Время жизни системы составляет 10-15 лет, затем отживающее срок оборудование меняют. Гравитационные эффекты планет, Солнца выявляют потребность использовать системы стабилизации. Процесс коррекций заметно снижает топливный ресурс аппаратов. Комплекс Intelsat допускает отклонения положения до 3-х градусов, продляя жизнь орбитального роя (свыше трёх лет).

Частоты

Окно прозрачности ограничено диапазоном 2-10 ГГц. Intelsat использует область 4-6 ГГц (С-диапазон). Повышение загрузки вызвало переход части трафика на Ku-диапазон (14, 11, 12 ГГц). Рабочий участок раздают порциями транспондерам. Земной сигнал принимается, усиливается, излучается назад.

Проблемы

  1. Дороговизна запуска. Преодоление 35 тысяч километров отнимает немало ресурсов.
  2. Задержка распространения сигнала превышает четверть секунды (достигая 1 с).
  3. Малый угол наклона линии визирования искусственного летательного аппарата повышает энергетические затраты.
  4. Площадь приёма покрыта неэффективно. Гигантские пространства лишены абонентов. КПД вещания чрезвычайно низок.
  5. Окна прозрачности узкие, наземные станции приходится разносить территориально, менять поляризацию.

Пути решения

Частично недостатки устраняет внедрение наклонной орбиты. Спутник перестаёт быть геостационарным (см. выше спутники-шпионы времён Холодной войны). Необходимо минимум три равноудалённых аппарата, чтобы обеспечить связь круглосуточно.

Полярная орбита

Полярная орбита одна способна покрыть поверхность. Однако потребуется несколько периодов обращения космического аппарата. Рой спутников, разнесённых по углу, способен решить задачу. Полярные орбиты обошли стороной коммерческое вещание, став верным помощником систем:

  • навигации;
  • метеорологии;
  • наземных станций управления.

Наклонная орбита

Наклон успешно использовался советскими спутниками. Орбита характеризуется следующими параметрами:

  • период обращения – 12 часов;
  • наклон – 63 градуса.

Видимые 8/12 часов три спутника обеспечивают связь полярным регионам, недоступным с экватора.

Спутниковый телефон

Мобильный гаджет напрямую ловит космос, минуя наземные вышки. Первый Inmarsat 1982 года обеспечивал доступ морякам. Семью годами позже создан наземный вид. Канада первой осознала преимущества оборудования пустынных территорий с редкими жителями. Вслед программу освоили США.

Проблему решает запуск низко летающих спутников:

  1. Период обращения – 70..100 минут.
  2. Высота 640..1120 км.
  3. Зона покрытия – круг радиусом 2800 км.

Учитывая физические параметры, длительность индивидуального сеанса связи охватывает диапазон 4-15 минут. Поддержание работоспособности требует известных усилий. Пара коммерсантов США в 90-е обанкротились, не сумев набрать достаточно абонентов.

Массо-габаритные характеристики непрерывно улучшаются. Globalstar предлагает фирменное ПО смартфона, посредством Bluetooth ловящего сигнал сравнительно громоздкого приёмника спутников.

Спутниковым телефонам требуется мощная приёмная антенна, желательно зафиксированная. Оборудуют преимущественно здания, транспорт.

Операторы

  1. ACeS охватывает одним-единственным спутником Азию.
  2. Inmarsat старейший оператор (1979 год). Оборудует яхты, корабли. Обладая 11 летательными аппаратами, компания медленно осваивает рынок мобильных устройств, заручившись помощью ACeS.
  3. Thuraya обслуживает Азию, Австралию, Европу, Африку, Средний восток.
  4. MSAT/SkyTerra американский провайдер, использующей оборудование эквивалентное Inmarsat.
  5. Terrestar покрывает Северную Америку.
  6. IDO Global Communications на стадии бездействия.

Сети

Коммерческие проекты ограниченны.

GlobalStar

GlobalStar – совместное детище Qualcomm и Loral Corporation, позже поддержанное Alcatel, Vodafone, Hyundai, AirTouch, Deutsche Aerospace. Запуск 12 спутников был сорван, первый звонок состоялся 1 ноября 1998 года. Начальная стоимость (февраль 2000 года) составила 1,79 доллар/мин. Претерпев ряд банкротств и преобразований, компания обеспечивает клиентов 120 стран.

Обеспечивает 50% трафика США (свыше 10000 вызовов). Работоспособность поддерживают наземные репитеры. Всего 40, включая 7, вмещаемых Северной Америкой. Территории, лишённые наземных репитеров, образуют зону молчания (Южная Азия, Африка). Хотя аппараты регулярно бороздят небесную высь.

Абоненты получают американские телефонные номера, исключая Бразилию, где присваивают код +8818.

Список услуг:

  • Голосовые вызовы.
  • Системы определения местоположения с погрешностью 30 км.
  • 9,6 кбит/с пакетный доступ в интернет.
  • Мобильная связь CSD GSM.
  • Роуминг.

Телефоны используют технологии Qualcomm CDMA, исключая Ericsson и Telit, принимающие традиционные SIM-карты. Базовые станции вынуждены поддерживать оба стандарта.

Iridium

Провайдер использует полярную орбиту, обеспечивая 100% покрытие планеты. Организаторы потерпели банкротство, компания возрождена в 2001 году.

Это интересно! Iridium – виновник ночных небесных вспышек. Летящие спутники хорошо видны невооружённым глазом.

Флотилия компании включает 66 спутников, используя 6 низкоорбитальных траекторий высотой 780 км. Аппараты общаются, задействовав Ka-диапазон. Львиная доля запущена бывшими банкротами. На январь 2017 обновлено 7 единиц. Регенерация продолжается: первая группа (10 штук) улетела 14 января, вторая – 25 июня, третья – 9 октября.

Это интересно! Спутник Iridium 33 10 февраля 2009 года протаранил русский Космос 2251. Небесные обломки сегодня летают над Сибирью.

Компания продолжает оказывать услуги 850 тысячам абонентов. 23% прибыли выплачено государством. Стоимость звонка составляет 0,75 – 1,5 доллара/мин. Обратные вызовы сравнительно дороги – 4 доллара/мин (Google Voice). Типичные сферы деятельности нанимателей:

  1. Нефтедобыча.
  2. Морской флот.
  3. Авиация.
  4. Путешественники.
  5. Учёные.

Особую благодарность просили передать обитатели южной полярной станции Амундсена-Скотта. Компания повсеместно продаёт пакеты вызовов длительностью 50-5000 минут. Валидность первых оставляет желать лучшего, дорогие (5000 минут = 4000 долларов) сохраняют работоспособность 2 года. Месячно продление – 45 долларов:

  • 75 минут стоят 175 долларов, срок использования – 1 месяц.
  • 500 минут – 600-700 долларов, срок использования – 1 год.

Телефоны

Бывшие владельцы снабжали клиентов телефонными аппаратами двух изготовителей:

Моторола 9500 стал соратником первой коммерческой пробы компании. Бытующая поныне мобильная ударопрочная версия 9575 рождена 2011 годом, дополнена экстренной кнопкой вызова GSM, интерфейсом продвинутого определения местоположения. Аппарат настраивает Wi-Fi хот-спот, позволяя пользователям рядовых смартфонов посылать электронные письма, СМС, посещать интернет.

Техника Kyocera заброшена производителем. Модели распродают перекупщики. KI-G100 на базе GSM-телефона частоты 900 МГц снабжён чемоданчиком, оснащённым мощной антенной, ловящей вещание. Возможность приёма СМС обеспечена, отравлять могут лишь отдельные модели (9522). SS-66K снабжён нетипичной шаровой антенной.

  1. 9575 ударопрочный, водонепроницаемый телефон, снабжённый пылезащитным корпусом. Выдерживает температуры минус 20 – плюс 50 градусов Цельсия.
  2. 9555 – снабжён встроенной гарнитурой, USB-интерфейсом, переходником на последовательный порт RS-232.
  3. 9505А – здоровенный гаджет формы кирпича. Снабжён родным интерфейсом RS-232.
  4. SS-55K выпущен ограниченной партией. Неимоверных размеров, продаётся перекупщиками eBay.

Прочее оборудование компании включало:

  1. Пейджеры.
  2. Таксофоны.
  3. Оснастку яхт, самолётов.

Буи

Плавучие бакены, напоминающие систему отслеживание цунами, способны вести приём/передачу коротких сообщений. Интерфейс позволит использовать функционал фирменного телефона, отказывающегося ловить спутники.